FLSA: Extending Latent Semantic Analysis with Features for Dialogue Act Classification
نویسندگان
چکیده
We discuss Feature Latent Semantic Analysis (FLSA), an extension to Latent Semantic Analysis (LSA). LSA is a statistical method that is ordinarily trained on words only; FLSA adds to LSA the richness of the many other linguistic features that a corpus may be labeled with. We applied FLSA to dialogue act classification with excellent results. We report results on three corpora: CallHome Spanish, MapTask, and our own corpus of tutoring dialogues.
منابع مشابه
Dialogue Act Classification, Higher Order Dialogue Structure, and Instance-Based Learning
The main goal of this paper is to explore the predictive power of dialogue context on Dialogue Act classification, both as concerns the linear context provided by previous dialogue acts, and the hierarchical context specified by conversational games. As our learning approach, we extend Latent Semantic Analysis (LSA) as Feature LSA (FLSA), and combine FLSA with the k-Nearest Neighbor algorithm. ...
متن کاملLatent Semantic Analysis for Dialogue Act Classification
This paper presents our experiments in applying Latent Semantic Analysis (LSA) to dialogue act classification. We employ both LSA proper and LSA augmented in two ways. We report results on DIAG, our own corpus of tutoring dialogues, and on the CallHome Spanish corpus. Our work has the theoretical goal of assessing whether LSA, an approach based only on raw text, can be improved by using additio...
متن کاملFuzzy Approach Topic Discovery in Health and Medical Corpora
The majority of medical documents and electronic health records (EHRs) are in text format that poses a challenge for data processing and finding relevant documents. Looking for ways to automatically retrieve the enormous amount of health and medical knowledge has always been an intriguing topic. Powerful methods have been developed in recent years to make the text processing automatic. One of t...
متن کاملSemantic Features for Dialogue Act Recognition
Dialogue act recognition commonly relies on lexical, syntactic, prosodic and/or dialogue history based features. However, few approaches exploit semantic information. The main goal of this paper is thus to propose semantic features and integrate them into a dialogue act recognition task to improve the recognition score. Three different feature computation approaches are proposed, evaluated and ...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004